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Vaccines based on mRNA-containing lipid nanoparticles

(LNPs) pioneered by Katalin Karikó and Drew Weissman at the

University of Pennsylvania are a promising new vaccine

platform used by two of the leading vaccines against

coronavirus disease in 2019 (COVID-19). However, there are

many questions regarding their mechanism of action in humans

that remain unanswered. Here we consider the immunological

features of LNP components and off-target effects of the

mRNA, both of which could increase the risk of side effects. We

suggest ways to mitigate these potential risks by harnessing

dendritic cell (DC) biology.
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Introduction
LNPs have grown in popularity as a delivery and adjuvant

system for mRNA vaccines. An abundance of preclinical

animal studies have shown the promise of this platform

[1] and human clinical trials by Moderna and Pfizer/

BioNTech of mRNA-LNP based SARS-CoV-2 vaccines

reported above 90% protection rates. The advantages of

using LNPs for vaccines are numerous. In addition to

being a safer alternative to viral vectors for the delivery of

mRNA vaccines, LNPs are self-adjuvating and highly

customizable. Furthermore, the LNP-mRNA platform

can be manufactured on a large scale and adapted easily

to emerging pathogens. Also, the recent development of

thermostable variants [2�] will overcome the necessity of

cold-chain storage, which is required to different degrees

for the current mRNA-LNP based SARS-CoV-2 vaccines.

However, because this is a new approach for human

vaccination, with different levels of reported side-effects
www.sciencedirect.com 
[3�,4�,5�,6�], there remain many unknowns and caveats

that should be considered.

Immunological features of LNPs
LNPs are �100 nm size carriers that consist of different

ratios of phospholipids, cholesterol, PEGylated lipids and

cationic/ionizable lipids. The LNPs’ phospholipid and

cholesterol components have structural and stabilizing

roles, whereas the PEGylated lipids support prolonged

circulation [7�]. Cationic/ionizable lipids are included to

allow complexation of the negatively charged mRNA

molecules and to enable the exit of the mRNA from

the endosome to the cytosol for translation [7�].

Innate immune features of LNPs

The phospholipid and cholesterol components of the

LNPs also occur naturally in the mammalian cell mem-

branes. Thus, they are unlikely to trigger any significant

innate immune recognition and inflammatory responses.

A less natural component of the LNPs is the cationic/

ionizable lipid. Some cationic/ionizable lipids can induce

inflammation by activating TLR pathways [8–10,11�] and

cell toxicity [7�]. The LNPs that were widely used in

preclinical vaccine studies and similar in composition to

the ones used for the human SARS-CoV-2 vaccines were

shown to have adjuvant effect when complexed with

mRNA [12]. However, the potentially inflammatory

nature of this mRNA-LNPs platform has not been

assessed [1,12]. The LNP component in this platform

contains proprietary ionizable lipid and supports the

induction of robust humoral immune responses [12].

Humans receiving the mRNA-LNP based SARS-CoV-

2 vaccines often presented with typical side effects of

inflammation, such as pain, swelling, and fever [3�]. Since

the mRNA of these platforms are nucleoside modified to

decrease innate immune recognition and activation [13],

we hypothesized that this mRNA-LNP platform’s adju-

vant activity could stem from the LNPs’ inflammatory

properties. Indeed, we recently reported that the LNP

component of the mRNA-LNP platform used in preclin-

ical studies is highly inflammatory [14]. Intradermal

injection of these LNPs alone or in combination with

non-coding poly-cytosine mRNA led to rapid and robust

innate inflammatory responses, characterized by neutro-

phil infiltration, activation of diverse inflammatory path-

ways, and production of various inflammatory cytokines

and chemokines. The same dose of LNP delivered

intranasally led to similar inflammatory responses in

the lung and resulted in a high mortality rate. As

expected, based on previous literature [7�], the
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inflammatory nature of these proprietary LNPs was

dependent on the ionizable lipid component. Further-

more, LNPs lacking the ionizable lipid failed to support

the generation of adaptive immune responses (manu-

script under review). Thus, these LNPs’ potent adjuvant

activity and reported superiority comparing to other

adjuvants in supporting the induction of adaptive

immune responses could stem from the inflammatory

nature of the ionizable lipid component. These preclini-

cal LNPs assessed by us are similar to those used for

human vaccines. Thus, the inflammatory milieu induced

by the LNPs could be partially responsible for reported

side effects of mRNA-LNP based SARS-CoV-2 vaccines

in humans, and are possibly contributory to their reported

high potency for eliciting protective immunity (Figure 1).

Whether with repeated injections, innate memory
Figure 1

Innate immune features
of LNPs

 

Immunological features of LNPs.

The cationic/ionizable lipid component of the LNP can trigger highly inflamm

sensing pathways. The resulting inflammatory milieu can support local and 

The adaptive immune responses are dependent on the innate inflammatory

adaptive immune responses will protect from subsequent infections and mi

Figure 2. The PEG component of the LNP can support the development of 
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responses [15] to the ionizable lipid component of the

LNPs will form and contribute to the adaptive immune

responses’ and side effects’ modulation remains to be

determined.

Adaptive immune features of LNPs

A growing number of reports show that polyethylene glycol

(PEG) can be immunogenic, and repeat administration of

PEG can induce anaphylactoid, complement activation-

related pseudoallergy (CARPA) reaction [16,17�,18].
Humans are likely developing PEG antibodies because

of exposure to everyday products containing PEG. There-

fore, some of the immediate allergic responses observed

with thefirst shot ofmRNA-LNP vaccines might be related

to pre-existing PEG antibodies (Figure 1). Since these

vaccines often require a booster shot, anti-PEG antibody
Adaptive immune features
of LNPs
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atory responses through the activation of different innate immune

systemic side effects and help develop adaptive immune responses.

 environment induced by the cationic/ionizable lipids. The generated

ght contribute to the development of side effects, as detailed in

complement activation-related pseudoallergy.
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formation is expected after the first shot. Thus, the allergic

events are likely to increase upon re-vaccination.

Off-target effects of vaccine mRNA
Based on the current mRNA-LNP vaccine design, LNPs

can be taken up by almost any cell type, near or far from

the site of injection, transfecting them with the antigen-

encoding mRNA [19]. Moreover, the mRNA used in

these vaccines are nucleoside-modified to decrease

inflammatory responses [13] and increase its stability in
vivo, allowing extended periods of mRNA translation

[20,21]. Also, a significant portion of the mRNA can be

re-packaged and expelled from transfected cells in extra-

cellular vesicles (EVs) [22��]. These vesicles could reach

cells far from the injection site, further increasing the

number of cells translating the antigen and extending the

duration of its expression.
Figure 2

Possible off-target effects of the mRNA-LNP platform.

The mRNA reaching the cytosol can have different fates. They can be re-pa

them target of the immune response induced by the vaccine. The intact ant

marking the cells for killing through ADCC. The ADCC should become evide

nucleated cells express MHC-I, the translated protein can be processed an

can lead to cell killing after the effector T cells are formed. The killing shoul

are also present.
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Long-term mRNA translation in non-professional antigen-

presenting cells (APCs) might lead to unanticipated cell

killing. Similar to any other self-proteins, synthesized vac-

cine proteins have access to antigen presentation on major

histocompatibility complex (MHC) class I molecules on

any nucleated cells [23]. Thus, any cell presenting anti-

genic determinants from the vaccine could become a target

of T cell-mediated killing. The so called ‘Covid-arm’, a

delayed-type hypersensitivity reaction, that develops in

some patients several days after vaccination [24�], could be

indeed an indication of effector CD8+ T cell responses

targeting the cells expressing thevaccine-derived peptides.

Furthermore, if vaccine-derived proteins become inserted

into the plasma membrane or secreted and associated with

the cell membrane, these cells could become targets of

antibody-dependent cellular cytotoxicity (ADCC) [25].

Both CD8+ T cell-mediated killing and ADCC should
Current Opinion in Virology

ckaged in EVs that can transfect adjacent or distant cells, making

igen coded by the mRNA can in theory reach the plasma membrane

nt after the antibodies specific to this antigen are formed. Since all the

d presented, like any other self-proteins, on MHC-I to CD8 T cells. This

d be accentuated upon booster shot when the tissue memory T cells
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become evident after an adaptive immune response has

been generated and may be accentuated upon secondary

immunization in the presence of memory cells and pre-

formed antibodies (Figure 2). In line with this, systemic

adverse events from the mRNA-LNP based SARS-CoV-2

vaccines were indeed more common after the second

vaccination, particularly with the highest dose [3�]. Strate-

gies that allow delivery of the mRNA exclusively to DCs

may limit the possible off-target effects. For this purpose

LNPs should be conjugated to DC-targeting antibodies or

ligands, such as anti-Langerin, anti-CLEC9A, anti-

DEC205, mannose, and so on [26–33].

Considering DC biology
The success of mRNA-LNP vaccines depends not only

on cellular internalization of the LNPs but on the release
Figure 3

Route of immunization determines tissue protection by T cells.

DCs upon migration to the draining lymph nodes imprint the antigen-specifi

administrated in the skin will imprint the T cells in the skin draining LNs to m

while DCs, from the airway epithelia upon intranasal immunization, will instr

lung tissue. These cells would then confer protection at these sites upon ex

that through lymph and bloodstream can provide systemic protection.
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of mRNA from the endosomal compartment, to enable

translation. It is thought that, in most cells, the ionizable

lipid component becomes protonated in the progressively

acidic environment of the endosome, leading to endo-

some destabilization and mRNA release [7�]. However,

DCs have specific biology that may interfere with this

process. Specifically, DCs have been reported to retain

intact protein antigens for days [29,34] in mildly acidic

endosomal compartments [34]. This likely allows DCs

more time to display antigenic determinants to T cells

and intact antigens to B cells [29,35–37]. However, the

low acidity environment of the DC endo-lysosomal com-

partment may inhibit the endosomal escape of mRNA by

failing to ionize the lipids in the LNPs. While it remains

to be tested, lipid carriers that fuse with the plasma

membrane and release their mRNA cargo into the cytosol
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c T cells to migrate and reside at their tissue of origin. Thus, vaccines

igrate to the skin and reside there as tissue-resident memory cells;

uct the T cells in the local LNs to populate the airways including the

posure to the pathogen. The DCs will also initiate antibody responses
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might be preferred when it comes to aiding mRNA

translation and subsequent antigen presentation in DCs.

Considering pre-existing inflammation
It has been shown that mRNA-LNP vaccines have an

altered tissue distribution, dynamics, and uptake in ani-

mals that have been pre-exposed to inflammatory agents

[7�]. These findings suggest that people with pre-existing

inflammatory conditions might show altered immune

responses to these vaccines and might present with more

severe side-effects.

Considering vaccine delivery route
The route of vaccine delivery determines which tissue will

be protected by the cellular immunity. Peripheral DCs
Figure 4

Strategies to exploit DC biology with the mRNA-LNP platform.

Here we present two not mutually exclusive strategies to use the mRNA-LN

by targeting DCs. On the left panel, we present a strategy that takes into co

thus they are more functionally specialized. In this case, we can have the L

targeting certain DC subsets we can achieve again a variety of different ada

lead to secretion of distinct polarizing cytokines by the DCs. On the right pa

cytokines along with the antigen (protein or mRNA coding for the antigen) d

make any DC subset to support different adaptive immune responses.
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program antigen-specific T cells in the lymphoid organs to

migrate to and reside in the DC’s tissue of origin [38].

However, most current vaccines, including the mRNA-

LNP based SARS-CoV-2 vaccines, are delivered into the

muscle. This delivery route is expected to support the

formation of antibodies that provide systemic protection

and T cells that patrol these organs but not the site of

natural exposure and infection, the airway epithelium. The

presence of virus-specific T cells in the right tissue would

be highly desirable because these cells can also provide

cross-protection across different strains of viruses [39–43].

Therefore, we would propose tailoring the vaccine’s route

of administration to the pathogen’s natural route of infec-

tion and developing intranasal vaccines for respiratory

viruses such as influenza virus and SARS-CoV-2 (Figure 3).
Current Opinion in Virology

P platform to support a variety of different adaptive immune responses

nsideration that not all DC subsets express the same PRR repertoire,

NPs containing different PRR ligand(s). By changing the ligands and

ptive responses. In this case the engagement of different PRRs will

nel, we propose to have mRNAs coding for certain polarizing

elivered to all the DCs. By changing the polarizing cytokines, we could
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Broadening vaccine-induced T cell responses
Our knowledge of immune mechanisms of mRNA-LNP

vaccines is still very limited. Vaccine-derived mRNAs are

expected to be translated and presented by MHC class I

but largely excluded from MHC class II [23]. Yet, the

existing mRNA-LNP vaccination studies clearly show

that both CD8+ T cell and CD4+ T cell responses are

induced [1].

The type of Th cell response induced depends on the DC

subsets and pattern-recognition receptor (PRR) pathways

engaged [44]. So far, the mRNA-LNP platform has been

reported to induce Th1 and T follicular helper cells,

likely through the engagement of TLRs by cationic lipids

[7�,11�]. To induce other Th cell subsets with the mRNA-

LNP platform, we propose two strategies. First, PRR

ligands could be included in the LNPs and, second,

mRNAs encoding T cell-polarizing cytokines could be

added to the LNPs. The first option is more restrictive as

not all DC subsets express the same PRR repertoire, and

thus not all DC subsets will be able to respond to the

stimuli carried by the LNPs. Delivering mRNAs encod-

ing polarizing cytokines would overcome this problem

and would allow any DC subset, independent of its PRR

profile, to polarize naive CD4+T cells towards the desired

lineage (Figure 4).

Thus, with mRNA technology, there is almost no limit to

modifying DC biology to match our needs.

Conclusion and future perspectives
The mRNA-LNP platform is very versatile, and as we

have seen with the recent pandemic, it can provide us

with a vaccine candidate in a matter of weeks. However,

being a relatively new vaccine platform, as presented

above, there are many unknowns and possible caveats

that should be addressed before we label it safe for

human use. Therefore, the discussed possible off-target

effects of the mRNAs should be addressed. The LNPs

can support very robust adaptive immune responses in

animal models compared to other FDA-approved adju-

vants. However, their higher efficacy probably relies on

their highly inflammatory nature. The presentation of

self-antigens in a highly inflammatory environment

could lead to a break in tolerance [45]. Therefore, we

believe more careful characterization of LNPs is needed

to balance positive adjuvant and harmful inflammatory

properties as LNP-associated vaccines move forward.

Some DC subsets at optimized antigen dose can induce

protective antibody responses in the absence of inflam-

matory agents [29,31,46]. These data suggest that LNP-

based vaccine platforms that lack inflammatory cationic/

ionizable lipids could be a viable option to induce

protective antibody responses if targeted to specific

DC subsets. The LNPs, unlike other adjuvants, can

serve a dual purpose, as both delivery vehicles for
Current Opinion in Virology 2021, 48:65–72 
different cargos and as an adjuvant. Therefore, the

adjuvant properties of these LNPs should certainly

be further exploited as a platform in combination with

proteins, subunit vaccines, or even in combination with

existing attenuated vaccines [47–52].
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